A norm on separable noncommutative Jordan algebras of degree $2$
نویسندگان
چکیده
منابع مشابه
A Generalization of Noncommutative Jordan Algebras*
and x y denotes the product x ‘3~ = my + y.2’. In Section 1 we show that a noncommutative Jordan algebra of characteristic # 2 must satisfy (1). Since power-associative algebras satisfying (1) need not be flexible [5] it follows that the class of power-associative algebras satisfying (1) is strictly larger than the class of noncommutative Jordan algebras. In Section 2 we obtain a structure theo...
متن کاملNoncommutative jordan algebras with commutators satisfying an alternativity condition.
The theorems of this paper show that the main results in the structure and representation theory of Jordan algebras and of alternative algebras are valid for a larger class of algebras defined by simple identities which obviously hold in the Jordan and alternative cass. A new unification of the Jordan and associative theories is also achieved.
متن کاملFunctional identities of degree 2 in CSL algebras
Let $mathscr{L}$ be a commutative subspace lattice generated by finite many commuting independent nests on a complex separable Hilbert space $mathbf{H}$ with ${rm dim}hspace{2pt}mathbf{H}geq 3$, ${rm Alg}mathscr{L}$ the CSL algebra associated with $mathscr{L}$ and $mathscr{M}$ be an algebra containing ${rm Alg}mathscr{L}$. This article is aimed at describing the form of additive mapppi...
متن کاملActions of Hopf algebras on noncommutative algebras
Often A is called H-module algebra. We refer reader to [11, 6] for the basic information concerning Hopf algebras and their actions on associative algebras. Definition 1.2 The invariants of H in A is the set AH of those a ∈ A, that ha = ε(h)a for each h ∈ H. Straightforward computations show, that AH is subalgebra of A. The notion of action of Hopf algebra on associative algebra generalize the ...
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1969
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1969-0241489-3